Earth's rotation is the rotation of the solid Earth around its own axis. The Earth rotates towards the east. As viewed from the North Star Polaris, the Earth turns counter-clockwise.
The North Pole, also known as the Geographic North Pole or Terrestrial North Pole, is the point in the Northern Hemisphere where the Earth's axis of rotation meets its surface. This point is distinct from the Earth's North Magnetic Pole. The South Pole is the other point where the Earth's axis of rotation intersects its surface, in Antarctica.
The Earth rotates once in about 24 hours from the point of view of the sun and once every 23 hours 56 minutes and 4 seconds from the point of view of the stars (see below). Earth's rotation is slowing slightly with time; thus, a day was shorter in the past. This is due to the tidal effects the Moon has on Earth's rotation. Atomic clocks show that a modern day is longer by about 1.7 milliseconds than a century ago, slowly increasing the rate at which UTC is adjusted by leap seconds.
Rotation period
True solar day
Earth's rotation period relative to the Sun (true noon to true noon) is its true solar day or apparent solar day. It depends on the Earth's orbital motion and is thus affected by changes in the eccentricity and inclination of Earth's orbit. Both vary over thousands of years so the annual variation of the true solar day also varies. Generally, it is longer than the mean solar day during two periods of the year and shorter during another two. The true solar day tends to be longer near perihelion when the Sun apparently moves along the ecliptic through a greater angle than usual, taking about 10 seconds longer to do so. Conversely, it is about 10 seconds shorter near aphelion. It is about 20 seconds longer near a solstice when the projection of the Sun's apparent movement along the ecliptic onto the celestial equator causes the Sun to move through a greater angle than usual. Conversely, near an equinox the projection onto the equator is shorter by about 20 seconds. Currently, the perihelion and solstice effects combine to lengthen the true solar day near December 22 by 30 mean solar seconds, but the solstice effect is partially cancelled by the aphelion effect near June 19 when it is only 13 seconds longer. The effects of the equinoxes shorten it near March 26 and September 16 by 18 seconds and 21 seconds, respectively.
Mean solar day
The average of the true solar day during the course of an entire year is the mean solar day, which contains 86,400 mean solar seconds. Currently, each of these seconds is slightly longer than an SI second because Earth's mean solar day is now slightly longer than it was during the 19th century due to tidal friction. The average length of the mean solar day since the introduction of the leap second in 1972 has been about 0 to 2 ms longer than 86,400 SI seconds. Random fluctuations due to core-mantle coupling have an amplitude of about 5 ms. The mean solar second between 1750 and 1892 was chosen in 1895 by Simon Newcomb as the independent unit of time in his Tables of the Sun. These tables were used to calculate the world's ephemerides between 1900 and 1983, so this second became known as the ephemeris second. In 1967 the SI second was made equal to the ephemeris second.
The apparent solar time is a measure of the Earth's rotation and the difference between it and the mean solar time is known as the equation of time.
Stellar and sidereal day
Earth's rotation period relative to the fixed stars, called its stellar day by the International Earth Rotation and Reference Systems Service (IERS), is 86,164.098 903 691 seconds of mean solar time (UT1) (23h 56m 4.098 903 691s, 0.997 269 663 237 16 mean solar days). Earth's rotation period relative to the precessing or moving mean vernal equinox, misnamed its sidereal day, is 86,164.090 530 832 88 seconds of mean solar time (UT1) (23h 56m 4.090 530 832 88s, 0.997 269 566 329 08 mean solar days). Thus the sidereal day is shorter than the stellar day by about 8.4 ms.[
Both the stellar day and the sidereal day are shorter than the mean solar day by about 3 minutes 56 seconds. The mean solar day in SI seconds is available from the IERS for the periods 1623–2005 and 1962–2005.
Recently (1999–2010) the average annual length of the mean solar day in excess of 86,400 SI seconds has varied between 0.25 ms and 1 ms, which must be added to both the stellar and sidereal days given in mean solar time above to obtain their lengths in SI seconds (see Fluctuations in the length of day).
Angular speed
The angular speed of Earth's rotation in inertial space is (7.2921150 ± 0.0000001) ×10−5 radians per SI second (mean solar second). Multiplying by (180°/π radians)×(86,400 seconds/mean solar day) yields 360.9856°/mean solar day, indicating that Earth rotates more than 360° relative to the fixed stars in one solar day. Earth's movement along its nearly circular orbit while it is rotating once around its axis requires that Earth rotate slightly more than once relative to the fixed stars before the mean Sun can pass overhead again, even though it rotates only once (360°) relative to the mean Sun. Multiplying the value in rad/s by Earth's equatorial radius of 6,378,137 m (WGS84 ellipsoid) (factors of 2π radians needed by both cancel) yields an equatorial speed of 465.1 m/s, 1,674.4 km/h or 1,040.4 mi/h. Some sources state that Earth's equatorial speed is slightly less, or 1,669.8 km/h. This is obtained by dividing Earth's equatorial circumference by 24 hours. However, the use of only one circumference unwittingly implies only one rotation in inertial space, so the corresponding time unit must be a sidereal hour. This is confirmed by multiplying by the number of sidereal days in one mean solar day, 1.002 737 909 350 795, which yields the equatorial speed in mean solar hours given above of 1,674.4 km/h.
The tangential speed of Earth's rotation at a point on Earth can be approximated by multiplying the speed at the equator by the cosine of the latitude. For example, the Kennedy Space Center is located at 28.59° North latitude, which yields a speed of: 1,674.4 kilometres per hour (1,040.4 mph) × cos (28.59) = 1,470.23 kilometres per hour (913.56 mph)
Apple Watch With Gold-Tin - Titanium App - Tiagiri Studio
ReplyDeleteTiagiri Studio, trekz titanium pairing an titanium curling iron interactive collaboration between Tiagiri Studio, the supplier titanium glasses frames of the Apple damascus titanium Watch, and a group of leading virtual reality tech titanium nail
im344 keenzapatoscolombia,keenbotasmexico,keenscarpe,keennederland,keendeutsch,keenschweiz,keenschuhe,keenboty,keensandale uk880
ReplyDelete